Питон разница по модулю

Модуль числа в Python

Очень часто возникает необходимость вычисления модуля числа в Python. Рассмотрим, что такое модуль числа, какие есть способы его вычисления. Так же отдельно коснемся комплексных чисел.

Модуль числа

Часто в программировании требуется вычислить абсолютное значение числа. Иначе говоря, отбросить знак.

При вычислении модуля возможны 3 ситуации:

  • Когда число больше 0. Если взять его по модулю — не изменится.
  • Модуль нуля так же равен нулю.
  • У отрицательного числа отбрасываем знак. То есть умножаем его на -1.

Но это все справедливо только для действительных чисел. Чему же тогда будет равен модуль комплексных?

Комплексное число состоит из действительной составляющей и мнимой. Геометрически это можно представить как 2 ортогональные оси: действительную и мнимую. Отмечаем на координатных осях требуемую точку. Модулем будет длина отрезка, проведенного из начала координат в эту точку.

Исходя из теоремы Пифагора получаем, что модуль комплексного числа это корень квадратный из суммы квадратов мнимой и действительной частей.

Вычисление

Вычислять модуль можно следующими способами:

  • Используя стандартную функцию abs.
  • С помощью функции fabs библиотеки math.
  • При помощи самостоятельно написанной функции.

Все эти функции работают как в Python 2, так и в Python 3.

abs

Для вычисления в Python модуля числа используется функция abs. Результат функции того же типа, которого был аргумент.

a = -10 b = abs(a) print(b) print(type(b)) 10

fabs

Можно так же воспользоваться функцией fabs из библиотеки math. Библиотеку можно подключить с помощью from math import fabs .

from math import fabs a = -10 b = fabs(a) print(b) print(type(b)) 10.0

Отличие abs от fabs заключается в том, что функция abs возвращает значение того же типа, что и аргумент. Функция же fabs вначале преобразует тип аргумента к вещественному числу.

Свое решение

Если по каким то причинам нет возможности или желания использовать стандартные функции, то можно написать свое решение.

Например, можно вычислить воспользоваться тернарным оператором.

a = -10 b = a if a > 0 else -a print(b) 10

На основе такого условия сделаем свою функцию.

def my_abs(a): return a if a > 0 else -a print(my_abs(-3)) 3

Модуль комплексного числа

Мы разобрались как происходит вычисление с действительными числами. Теперь посмотрим, как в языке программирования Python можно получить модуль комплексного.

Читайте также:  Html символ мобильный телефон

Функцией fabs мы не сможем воспользоваться. Если попытаемся это сделать, то получим ошибку приведения комплексного числа к действительному (TypeError).

from math import fabs a = -10-2j b = fabs(a) print(b) Traceback (most recent call last): File "main.py", line 3, in b = fabs(a) TypeError: can't convert complex to float

А вот с помощью abs преобразование удается.

a = -10-2j b = abs(a) print(b) 10.19803902718557

Или же напишем свою функцию:

from math import sqrt def my_abs_complex(c): return sqrt(c.real**2 + c.imag**2) a = -10-2j b = my_abs_complex(a) print(b) 10.198039027185569

Результаты получились одинаковыми. Но нам все равно пришлось подключить библиотеку math для вычисления квадратного корня.

Источник

Модуль числа в Python — функции abs() и math.fabs()

Запускаю китайскую реплику «ТАРДИС», и вот мы в пятом классе. На доске нарисована числовая ось, а на ней выделен отрезок. Его начало в точке 4, а конец — в 8. Учительница говорит, что длину отрезка можно найти путём вычитания координаты начала отрезка из координаты его конца. Вычитаем, получаем 4, и радуемся — мы нашли длину. Ура! 🎉

Перемещаемся на год вперёд, и там происходит странное: учительница выделяет мелом другой отрезок, но делает это в каком-то неправильном месте — левее точки с цифрой «0». Теперь перед нами старая задача, но с новыми числами и даже буквами: A, B, минус 4 и минус 8. Мы начинаем искать длину отрезка AB = [-4;-8]:

Переводим непонимающий взгляд с получившейся отрицательной длины на довольную улыбающуюся учительницу, а затем на доску. Там наверху, рядом с сегодняшней датой, написана тема урока: «Модуль числа».

Что такое модуль числа

Для вещественных чисел модуль определяется так:

Т.е. в любом случае, модуль — число большее или равное 0. Поэтому отрицательная длина в примере хитрой учительницы должна была быть взята по модулю:

Тогда дети бы увидели, что геометрический смысл модуля — есть расстояние. Это справедливо и для комплексных чисел, однако формальное определение для них отличается от вещественного:

, где z — комплексное число: z = x + i y.

В Python для нахождения модуля числа применяются две функции: fabs() из подключаемой библиотеки math и встроенная функция abs() .

Abs

В то время как math.fabs() может оперировать только вещественными аргументами, abs() отлично справляется и с комплексными. Для начала покажем, что abs в python работает строго в соответствии с математическим определением.

# для вещественных чисел print(abs(-1)) print(abs(0)) print(abs(1)) > 1 > 0 > 1

Как видно, с вещественными числами всё в порядке. Перейдём к комплексным.

# для комплексных чисел print(complex(-3, 4)) print(abs(complex(-3, 4))) > (-3+4j) > 5.0

Читайте также:  Warning php startup invalid library

Если вспомнить, что комплексное число выглядит так: z = x + i y, а его модуль вычисляется по формуле:

, то можно без труда посчитать, что sqrt(3**2 + 4**2) действительно равно 5.0 .

Можно заметить, что abs() возвращает значения разных типов. Это зависит от типа аргумента:

print(type(abs(1))) > print(type(abs(1.0))) > print(type(abs(complex(1.0, 1.0))))

В этом кроется ещё одно отличие abs() от fabs() . Функция из модуля math всегда приводит аргумент к вещественному типу, а если это невозможно сделать — выбрасывает ошибку:

print(type(math.fabs(complex(2,3)))) > TypeError: can’t convert complex to float

Fabs

Для начала работы с fabs() необходимо импортировать модуль math с помощью следующей инструкции:

Мы уже выяснили, что fabs() не работает с комплексными числами, поэтому проверим работу функции на вещественных:

print(math.fabs(-10)) print(math.fabs(0)) print(math.fabs(10)) > 10.0 > 0.0 > 10.0

Функция производит вычисления в соответствие с математическим определением, однако, в отличие от abs() , всегда возвращает результат типа float :

Основные свойства модулей

# Квадрат модуля = квадрату числа print(pow(4, 2) == pow(abs(4), 2)) > True # |x| = |-x| print(abs(-10) == abs(10)) > True # Модуль произведения = произведению модулей: |ab|=|a||b| print(math.fabs(11 * 3) == math.fabs(11) * math.fabs(3)) > True # Аналогично для деления: |a/b|=|a|/|b| print(math.fabs(48/8) == math.fabs(48) / math.fabs(8)) > True # |a ** b| = |a| ** b print(abs(2 ** 10) == abs(2) ** 10) > True

И еще несколько важных неравенств:

Источник

Числа: целые, вещественные, комплексные

Python 3 логотип

Числа в Python 3: целые, вещественные, комплексные. Работа с числами и операции над ними.

Целые числа (int)

Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:

x + y Сложение
x — y Вычитание
x * y Умножение
x / y Деление
x // y Получение целой части от деления
x % y Остаток от деления
-x Смена знака числа
abs(x) Модуль числа
divmod(x, y) Пара (x // y, x % y)
x ** y Возведение в степень
pow(x, y[, z]) x y по модулю (если модуль задан)

Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).

Над целыми числами также можно производить битовые операции

x | y Побитовое или
x ^ y Побитовое исключающее или
x & y Побитовое и
x Битовый сдвиг влево
x >> y Битовый сдвиг вправо
~x Инверсия битов

Дополнительные методы

int.bit_length() — количество бит, необходимых для представления числа в двоичном виде, без учёта знака и лидирующих нулей.

 int.to_bytes(length, byteorder, *, signed=False) - возвращает строку байтов, представляющих это число.
 int.from_bytes(bytes, byteorder, *, signed=False) - возвращает число из данной строки байтов.

Те, у кого в школе была информатика, знают, что числа могут быть представлены не только в десятичной системе счисления. К примеру, в компьютере используется двоичный код, и, к примеру, число 19 в двоичной системе счисления будет выглядеть как 10011. Также иногда нужно переводить числа из одной системы счисления в другую. Python для этого предоставляет несколько функций:

  • int([object], [основание системы счисления]) — преобразование к целому числу в десятичной системе счисления. По умолчанию система счисления десятичная, но можно задать любое основание от 2 до 36 включительно.
  • bin(x) — преобразование целого числа в двоичную строку.
  • hex(х) — преобразование целого числа в шестнадцатеричную строку.
  • oct(х) — преобразование целого числа в восьмеричную строку.

Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам:

 Для высокой точности используют другие объекты (например Decimal и Fraction)).

Также вещественные числа не поддерживают длинную арифметику:

Простенькие примеры работы с числами:

float.as_integer_ratio() — пара целых чисел, чьё отношение равно этому числу.

float.is_integer() — является ли значение целым числом.

float.hex() — переводит float в hex (шестнадцатеричную систему счисления).

classmethod float.fromhex(s) — float из шестнадцатеричной строки.

  Помимо стандартных выражений для работы с числами (а в Python их не так уж и много), в составе Python есть несколько полезных модулей.

Модуль math предоставляет более сложные математические функции.

 

В Python встроены также и комплексные числа:

     : complex()    Для работы с комплексными числами используется также модуль cmath.

Для вставки кода на Python в комментарий заключайте его в теги

  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов

Источник

Оцените статью