Методы математического программирования позволяющие решать задачи

Постановка задачи и методы математического программирования.

Математическая постановка (модель) задачи математического программирования (МП) выглядит следующим образом:

необходимо определить значения вектора переменных

x = (x1,x2,…, xn), которые удовлетворяют ограничениям вида

g i (x1,x2,…, xn) bi , для всех i = 1,…, m

и доставляют максимум или минимум целевой функции

f (x1,x2,…, xn) → max (min).

Решением (планом, вектором управления) задачи МП называется всякий вектор х из пространства E n (E n — n-мерное векторное пространство), в геометрической интерпретации – это точка векторного n-мерного пространства. Допустимым решением (планом) задачи МП называется такое решение задачи, которое удовлетворяет ее ограничениям g i (x1,x2,…,xn) bi , для всех i = 1,…, m.

Совокупность допустимых решений задачи называют областью допустимых решений (ОДР) задачи МП, которую, как правило, обозначают как D. Оптимальным решением х*называется такое допустимое решение, при котором целевая функция достигает своего оптимального (в нашем случае — максимального) значения, т. е. решение, удовлетворяющее условию max f(x) = f(x*). Величина f* = f(x*) называется оптимальным значением целевой функции.

Окончательным решением задачи является пара (х*, f*), состоящая из оптимального решения и оптимального значения целевой функции

Постановка задачи и методы стохастического программирования

При перспективном и оперативном планировании работы предприятия возникает необходимость в учете ряда случайных факторов, существенно влияющих на процесс производства. К таким факторам относятся спрос, который не всегда может быть предсказуем, непредусмотренные сбои в поступлении сырья, энергии, рабочей силы, неисправности и аварии оборудования. Еще больше случайных факторов необходимо учитывать при планировании производства, эффективность которого зависит от климатических условий, урожайности и т.д. Поэтому, например, задачи планирования лесного производства целесообразно ставить и исследовать в терминах и понятиях стохастического программирования, когда элементы задачи линейного программирования (матрица коэффициентов A, вектора ресурсов b, вектора оценок c) часто оказываются случайными. Подобного типа задачи ЛП принято классифицировать как задачи стохастического программирования (СП).

Подходы к постановке и анализу стохастических задач существенно различаются в зависимости от последовательности получения информации — в один прием или по частям. При построении стохастической модели важно также знать, необходимо ли принять единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз корректировать решение. В соответствии с этим в стохастическом программировании исследуются одноэтапные, двухэтапные и многоэтапные задачи.

В одноэтапных задачах решение принимается один раз и не корректируется. Они различаются по показателям качества решения (по целевым функциям), по характеру ограничений и по виду решения.

Читайте также:  Программирование атс коралл р 500

Задача СП может быть сформулирована в M- и P- постановках по отношению к записи целевой функции и ограничений.

Случайны элементы вектора с (целевая функция).

При M-постановке целевая функция W записывается в виде

что означает оптимизацию математического ожидания целевой функции. От математического ожидания целевой функции можно перейти к математическому ожиданию случайной величины cj

Wmin — предварительно заданное допустимое наихудшее (минимальное) значение целевой функции.

Wmax — предварительно заданное допустимое наихудшее (максимальное) значение целевой функции.

Суть P-постановки заключается в том, что необходимо найти такие значения xj, при которых максимизируется вероятность того, что целевая функция будет не хуже предельно допустимого значения.

Ограничения задачи, которые должны выполняться при всех реализациях параметров условий задачи, называются жесткими ограничениями. Часто возникают ситуации, в которых постановка задачи позволяет заменить жесткие ограничения их усреднением по распределению случайных параметров. Такие ограничения называют статистическими:

В тех случаях, когда по содержательным соображениям можно допустить, чтобы невязки в условиях не превышали заданных с вероятностями, небольшими  i>0, говорят о стохастических задачах с вероятностными ограничениями:

т.е. вероятность выполнения каждого заданного ограничения должна быть не менее назначенной величины  i. Параметры  i предполагаются заданными или являются решениями задачи более высокого уровня.

Представленные задачи как в M-, так и в P- постановках непосредственно решены быть не могут. Возможным методом решения этих задач является переход к их детерминированным эквивалентам. В основе этого перехода лежит использование закона распределения случайной величины. В инженерной практике наиболее часто используется нормальный закон распределения, поэтому дальнейшие зависимости приведем для этого случая.

Принимаем, что aij, bi, cj подчинены нормальному закону распределения. В этом случае будет справедлива следующие детерминированные постановки:

и  j — математическое ожидание и среднее квадратическое отклонение случайной величины cj.

— соответственно, математические ожидания и дисперсии случайных величин aij и bi;

— значение центрированной нормированной случайной величины в нормальном законе распределения, соответствующей заданному уровню вероятности соблюдения ограничений  i.

Сделаем несколько замечаний к приведенным зависимостям:

  • задача стохастического программирования сведена к задаче нелинейной оптимизации и может быть решена одним из рассматриваемых ранее методов;
  • сравнение ограничения ресурса в стохастическом программировании и аналогичным ограничением в задаче линейного программирования показывает, что учет случайного характера величин aij и bi приводит к уменьшению располагаемого ресурса на величину

т.е. к необходимости в дополнительном ресурсе. Однако этот дополнительный ресурс может оказаться неиспользованным, но для гарантированного выполнения плана его иметь необходимо.

Читайте также:  Дипломная работа web программирование

В задачах принятия оптимальных решений широкое применение получил метод Монте-Карло. Основными особенностями этого метода, основанного на многократном повторении одного и того же алгоритма для каждой случайной реализации, являются: универсальность (метод не накладывает практически никаких ограничений на исследуемые параметры, на вид законов распределения); простота расчетного алгоритма; необходимость большого числа реализаций для достижения хорошей точности; возможность реализации на его основе процедуры поиска оптимальных параметров проектирования. Отметим основные факторы, определившие применение метода статистического моделирования в задачах исследования качества при проектировании: метод применим для задач, формализация которых другими методами затруднена или даже невозможна; возможно применение этого метода для машинного эксперимента над не созданной в натуре системы, когда натурный эксперимент затруднен, требует больших затрат времени и средств или вообще не допустим по другим соображениям.

  1. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование. – М.: Высшая школа, 1980. – 300 с.
  2. Г о л ь ш т е й н Е. Г., Ю д и н Д. Б., Новые направления в линейном программировании, М., 1966; [2] Theorie der Hnearen parametrischen Optimierung, В., 1974.
  3. «Математические методы: Учебник» / Партика Т.Л., Попов И.И. – М: ФОРУМ: ИНФРА, 2005.
  4. Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1986. –

Источник

2. Методы математического программирования.

Они позволяют выбрать совокупность чисел, являющихся переменными в уравнениях и обеспечивающих экстремум некоторой функции при ограничениях, определяемых условиями работы планируемого объекта.

В зависимости от свойств функций, используемых в моделях математического программирования, модели разделяются на следующие классы:

а) модели линейного программирования, в которых применяются линейные зависимости между планируемыми параметрами;

б) модели нелинейного программирования, в которых некоторые функции нелинейны;

в) модели целочисленного программирования, в которых переменные в уравнениях по своему физическому смыслу могут принимать лишь ограниченное число дискретных значений;

г) модели параметрического программирования, если исходные параметры при переменных в моделях могут изменяться в некоторых пределах;

д) модели стохастического программирования, если с их помощью решаются в процессе планирования задачи экстремума при наличии случайных параметров в их условиях;

е) модели динамического программирования, позволяющие находить оптимальные решения по конечным результатам предыдущих решений;

ж) модели блочного программирования, которые в процессе планирования позволяют точно или приблизительно получать оптимальные решения задач больших размеров по решениям ряда за­дач с меньшим числом переменных ограничений.

Читайте также:  Методология структурного программирования возникла

Наиболее часто в процессах внутрифирменного планирования применяются задачи линейного программирования. Приведем в качестве примера ряд задач, которые могут быть решены с помощью данного метода.

Предприятие выпускает две модели бытовых холодильников. Первая модель — холодильник высокого класса, вторая — упрощенный вариант, в котором холодильная и морозильная камеры совмещены, предназначенный для продажи по низким ценам, но в больших количествах. Спрос на обе модели превышает предложение, но производственные мощности ограничены. При составлении плана производства возникает вопрос: сколько необходимо производить холодильников двух моделей, чтобы получить максимальную прибыль?

При планировании поставок продукции часто возникает следующая задача. Необходимо переместить ряд товарных вагонов из одного места в другое с минимальными затратами. При относительно небольшом числе пунктов отправления и назначения и ограниченном количестве вагонов общее число возможных вариантов перевозок составит миллионы, что традиционными методами решить невозможно. Задачи такого класса встают перед крупными фирмами, когда требуется отгрузить различную продукцию многих заводов на многочисленные склады.

При составлении оптимального плана производства крупной горнодобывающей компании на 25 лет необходимо учесть спрос, возможные изменения в технике, в геологических условиях и ряд других факторов, имеющих отношение к проблеме. Эта задача также может быть решена методом линейного про­граммирования.

Несмотря на свою привлекательность, модели линейного про­граммирования имеют серьезные недостатки. Основной из них заключается в том, что все зависимости в модели рассматриваются как линейные. Это значит, что, если затраты на перевозку одной тонны груза на один километр составляют 10 тыс. р., то при перевозке на 100 км они будут считаться равными 1 млн. Для большинства экономических задач зависимости носят нелинейный характер. Но во многих планируемых ситуациях в пределах интересую­щего нас лага зависимости можно считать линейными.

Другой недостаток линейного программирования состоит в том, что с его помощью можно решать только те задачи, для которых:

• существуют количественные цели, например максимизация прибыли или минимизация издержек;

• распределяемые ресурсы имеют верхний предел, как, например, производственные мощности;

• варианты использования ресурсов могут сравниваться;

• имеется общая единица измерения;

• объем расчетов является выполненным.

Наконец, большое число плановых задач насчитывает такое количество переменных, что решить задачу методами линейного программирования становится невозможным. В этом случае приходится упрощать задачу, что выдвигает вопрос, не приведет ли подобное упрощение к тому, что решение окажется бесполезным.

Источник

Оцените статью