Java hashmap return all values

Java hashmap return all values

Hash table based implementation of the Map interface. This implementation provides all of the optional map operations, and permits null values and the null key. (The HashMap class is roughly equivalent to Hashtable , except that it is unsynchronized and permits nulls.) This class makes no guarantees as to the order of the map; in particular, it does not guarantee that the order will remain constant over time. This implementation provides constant-time performance for the basic operations ( get and put ), assuming the hash function disperses the elements properly among the buckets. Iteration over collection views requires time proportional to the «capacity» of the HashMap instance (the number of buckets) plus its size (the number of key-value mappings). Thus, it’s very important not to set the initial capacity too high (or the load factor too low) if iteration performance is important. An instance of HashMap has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of entries in the hash table exceeds the product of the load factor and the current capacity, the hash table is rehashed (that is, internal data structures are rebuilt) so that the hash table has approximately twice the number of buckets. As a general rule, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the lookup cost (reflected in most of the operations of the HashMap class, including get and put ). The expected number of entries in the map and its load factor should be taken into account when setting its initial capacity, so as to minimize the number of rehash operations. If the initial capacity is greater than the maximum number of entries divided by the load factor, no rehash operations will ever occur. If many mappings are to be stored in a HashMap instance, creating it with a sufficiently large capacity will allow the mappings to be stored more efficiently than letting it perform automatic rehashing as needed to grow the table. Note that using many keys with the same hashCode() is a sure way to slow down performance of any hash table. To ameliorate impact, when keys are Comparable , this class may use comparison order among keys to help break ties. Note that this implementation is not synchronized. If multiple threads access a hash map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more mappings; merely changing the value associated with a key that an instance already contains is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be «wrapped» using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map:

Map m = Collections.synchronizedMap(new HashMap(. ));

The iterators returned by all of this class’s «collection view methods» are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator’s own remove method, the iterator will throw a ConcurrentModificationException . Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs. This class is a member of the Java Collections Framework.

Читайте также:  Python memory usage by object

Nested Class Summary

Nested classes/interfaces declared in class java.util.AbstractMap

Nested classes/interfaces declared in interface java.util.Map

Constructor Summary

Constructs an empty HashMap with the default initial capacity (16) and the default load factor (0.75).

Источник

Java hashmap return all values

Hash table based implementation of the Map interface. This implementation provides all of the optional map operations, and permits null values and the null key. (The HashMap class is roughly equivalent to Hashtable, except that it is unsynchronized and permits nulls.) This class makes no guarantees as to the order of the map; in particular, it does not guarantee that the order will remain constant over time. This implementation provides constant-time performance for the basic operations (get and put), assuming the hash function disperses the elements properly among the buckets. Iteration over collection views requires time proportional to the «capacity» of the HashMap instance (the number of buckets) plus its size (the number of key-value mappings). Thus, it’s very important not to set the initial capacity too high (or the load factor too low) if iteration performance is important. An instance of HashMap has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of entries in the hash table exceeds the product of the load factor and the current capacity, the hash table is rehashed (that is, internal data structures are rebuilt) so that the hash table has approximately twice the number of buckets. As a general rule, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the lookup cost (reflected in most of the operations of the HashMap class, including get and put). The expected number of entries in the map and its load factor should be taken into account when setting its initial capacity, so as to minimize the number of rehash operations. If the initial capacity is greater than the maximum number of entries divided by the load factor, no rehash operations will ever occur. If many mappings are to be stored in a HashMap instance, creating it with a sufficiently large capacity will allow the mappings to be stored more efficiently than letting it perform automatic rehashing as needed to grow the table. Note that using many keys with the same hashCode() is a sure way to slow down performance of any hash table. To ameliorate impact, when keys are Comparable , this class may use comparison order among keys to help break ties. Note that this implementation is not synchronized. If multiple threads access a hash map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more mappings; merely changing the value associated with a key that an instance already contains is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be «wrapped» using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map:

Map m = Collections.synchronizedMap(new HashMap(. ));

The iterators returned by all of this class’s «collection view methods» are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator’s own remove method, the iterator will throw a ConcurrentModificationException . Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs. This class is a member of the Java Collections Framework.

Читайте также:  Rest api python json

Nested Class Summary

Nested classes/interfaces inherited from class java.util.AbstractMap

Nested classes/interfaces inherited from interface java.util.Map

Constructor Summary

Constructs an empty HashMap with the default initial capacity (16) and the default load factor (0.75).

Источник

Java Print HashMap Example

This example shows how to print HashMap in Java. The example also shows how to print all keys, all values, and all key-value pairs of HashMap using different ways.

How to print HashMap in Java?

The AbstractMap class, the parent class of the HashMap class, has overridden the toString method which returns a string representation of the map. All key-value pairs are enclosed in < and >and separated by a comma (,). The iterator of the entry set returns the order of the key-value pairs.

How to print all keys and values of HashMap using entrySet?

If you do not want the default formatting done by the toString method, you can get the entry set from the HashMap and print all key-value pairs one by one using the for loop as given below.

Java 8 and above

If you are using Java version 8 and above, you can use the below given code to print all keys and values of HashMap.

How to print all the keys of HashMap?

The keySet method of the HashMap class returns a Set view containing all the keys of the HashMap.

You can also use the System.out.println statement instead of using the for loop if you do not want to change the output format.

How to print all the values of the HashMap?

The values method of the HashMap returns a Collection view containing all the values contained in the HashMap.

Читайте также:  Css href стиль border

You can also use System.out.println statement instead of using the for loop if you do not want to change the output format.

How to print HashMap containing custom class object as keys or values?

In all of the above examples, we printed Integer and String objects using the System.out.println statement. They were printed fine because both of these classes have overridden the toString method. Let’s try to print HashMap containing custom class objects.

We have put objects of Emp class as values in the HashMap in below given example.

As you can see from the output, the keys were printed fine but the values were not. It is because our Emp class has not overridden the toString method so it inherited the method from the Object class.

The toString method of the Object class returns the class name of the object, followed by @, followed by the hexadecimal hash code of the object. The format is not readable and hence it is suggested for all the subclasses to override the toString method to produce informative text.

Let’s override the toString method in the Emp class and try again.

Источник

Оцените статью